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Intro to Non-convex Optimization: 
GD avoids saddle points
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• Vector 0 is a fixed point. Does 𝑥𝑡 converge to 0?

Depends on the eigenvalues of A!
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Same holds if A not symmetric (use spectral 
radius and Jordan decomposition)!
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with eigenvalue greater than one? 
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• What if 𝐴 has eigenvalues greater than one as well?

The behavior of 𝒙𝒕 depends on 𝒙𝟎!

• Remark: Proof exactly the same as before. What if 𝑥0 ⊥ 𝑣𝑗 ≠ 0 with 𝑣𝑗 an eigenvector

with eigenvalue greater than one? 
Trajectory diverges!



Why do we care?

Optimization for Machine Learning

• Remark: We may assume that 𝐴 is symmetric. Why?
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• Remark: We may assume that 𝐴 is symmetric. Why?

𝑨 + 𝑨𝑻 is symmetric!

Linear Dynamical System!
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• Remark: What if 𝐴 has negative eigenvalues? 
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• Remark: What if 𝐴 has negative eigenvalues? 
Then 𝒙 = 𝟎 is not a local 

minimum! It is a saddle point!
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• Question: But if it is a saddle point, when do we converge to it?

• Answer: Only if 𝑥0 belongs to the span of the eigenvalues that are less 
than one of 𝐼 − 𝜖𝐴. 
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• Question: But if it is a saddle point, when do we converge to it?

• Answer: Only if 𝑥0 belongs to the span of the eigenvalues that are less 
than one of 𝐼 − 𝜖𝐴. 
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• Conclusion: GD converges to 𝑥 = 0 only if 𝑥0 ∈ 𝐸𝑠.

• But how likely it is that 𝑥0 ∈ 𝐸𝑠 if 𝑘 < 𝑛?   
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• Conclusion: GD converges to 𝑥 = 0 only if 𝑥0 ∈ 𝐸𝑠.

• But how likely it is that 𝑥0 ∈ 𝐸𝑠 if 𝑘 < 𝑛?   Very unlikely!



Convergence to first order stationarity

Optimization for Machine Learning



Convergence to first order stationarity

Optimization for Machine Learning



Convergence to first order stationarity

Optimization for Machine Learning



Convergence to first order stationarity

Optimization for Machine Learning



Gradient Descent Avoids strict saddles

Optimization for Machine Learning



Gradient Descent Avoids strict saddles

Optimization for Machine Learning



Gradient Descent Avoids strict saddles

Optimization for Machine Learning

Pause…
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Everybody please remain calm. The theorem above just says:
• Locally in the neighborhood of 0, it suffices to analyze the first derivative of 𝜙,𝐷𝜙.
• All the trajectories that converge to 0 (reach a neighborhood of 0 and remain there 
forever, must lie in some set 𝑊𝑙𝑜𝑐

𝑐𝑠 of dimension as 𝐸𝑠. 
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Conclusion

• Introduction to Non-convex Optimization.

– Gradient Descent avoids strict saddles!

• Next lecture we will talk about more about 
non-convex optimization.


