L08 — Week 4
Intro to Non-convex Optimization:
GD avoids saddle points

CS 295 Optimization for Machine Learning

loannis Panageas



Linear Dynamical Systems

Definition (Linear Dynamical Systems). Let A be a symmetric matrix of size
n X mn.
Xt41 = Axy.

One can show that

Xt = Atxo.

* Vector 0 is a fixed point. Does x; converge to 0?
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Linear Dynamical Systems

Definition (Linear Dynamical Systems). Let A be a symmetric matrix of size
n X mn.
Xt41 = A.Xt.

One can show that
Xt — Atxo.

* Vector 0 is a fixed point. Does x; converge to 0?

Depends on the eigenvalues of Al
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Linear Dynamical Systems

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size n X n
and assume that || A||, < 1. Then for all xy € R”"

lim x; = 0.
t—o00

Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the
whole R™. Let vq, ..., v, these eigenvectors with eigenvalues A, ..., A\,
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Linear Dynamical Systems

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size n X n
and assume that || A||, < 1. Then for all xy € R”"

lim x; = 0.
t—o00

Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the
whole R™. Let vq, ..., v, these eigenvectors with eigenvalues A, ..., A\,

Express g = Y, _, ¢xVk (as a linear combination of the eigenvectors).

t. _ /
Therefore A*xg = ), _; CkAL V.
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Linear Dynamical Systems

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size n X n
and assume that || A||, < 1. Then for all xy € R”"

lim x; = 0.
t—o00

Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the
whole R™. Let vq, ..., v, these eigenvectors with eigenvalues A, ..., A\,

Express g = Y, _, ¢xVk (as a linear combination of the eigenvectors).

t. _ /
Therefore A*xg = ), _; CkAL V.

Since ||A|l, < 1, it follows that Ay < 1 for all k, that is lim; . AL = 0.
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Linear Dynamical Systems

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size n X n
and assume that || A||, < 1. Then for all xy € R"

Iim x; = 0.

t—00
Proof. Since A is symmetric, it has eigenvalues whose eigenvectors span the
whole R™. Let vq, ..., v, these eigenvectors with eigenvalues A, ..., A\,

Express xg = Same holds if A not symmetric (use spectral pctors).

radius and Jordan decomposition)!

t. _ /
Therefore A*xg = ), _; CkAL V.

Since ||A|l, < 1, it follows that Ay < 1 for all k, that is lim; . AL = 0.
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Linear Dynamical Systems

 What if A has eigenvalues greater than one as well?

The behavior of x; depends on x!
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Linear Dynamical Systems

 What if A has eigenvalues greater than one as well?

The behavior of x; depends on x!

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size n X n
and assume that vy, ..., vy are eigenvectors with eigenvalues less than one. Assume
that xg € span(v1, ..., vx). Then

lim Xy = 0.
t—co

* Remark: Proof exactly the same as before. What if x, L v; # 0 with v; an eigenvector
with eigenvalue greater than one?
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Linear Dynamical Systems

 What if A has eigenvalues greater than one as well?

The behavior of x; depends on x!

Lemma (Linear Dynamical Systems). Let A be a symmetric matrix of size n X n
and assume that vy, ..., vy are eigenvectors with eigenvalues less than one. Assume
that xg € span(v1, ..., vx). Then

lim Xy = 0.
t—co

* Remark: Proof exactly the same as before. What if x, L v; # 0 with v; an eigenvector
with eigenvalue greater than one?

Trajectory diverges!
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Why do we care?

Definition (Quadratic Functions). Let A be a square matrix of size n X n. A
function f has quadratic form if

f(x) = xT Ax.

* Remark: We may assume that A4 is symmetric. Why?
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Why do we care?

Definition (Quadratic Functions). Let A be a square matrix of size n X n. A
function f has quadratic form if

f(x) = xT Ax.
* Remark: We may assume that A4 is symmetric. Why?

Observe that f(x) = txTAx + JxTATx = JxT(A + AT)x.
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Why do we care?

Definition (Quadratic Functions). Let A be a square matrix of size n X n. A
function f has quadratic form if

f(x) = xT Ax.

* Remark: We may assume that A4 is symmetric. Why?

Observe that f(x) = txTAx + JxTATx = JxT(A + AT)x.

A + AT is symmetric!
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Why do we care?

Definition (Quadratic Functions). Let A be a square matrix of size n X n. A
function f has quadratic form if

f(x) = xT Ax.

* Remark: We may assume that A4 is symmetric. Why?

Observe that f(x) = txTAx + JxTATx = JxT(A + AT)x.

A + AT is symmetric!

Fact (GD for Quadratic). Let f(x) = sxT Ax. GD boils down to:
Xt11 =Xt —€Ax; = (I — €A)x;.
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Why do we care?

Definition (Quadratic Functions). Let A be a square matrix of size n X n. A
function f has quadratic form if

f(x) = xT Ax.

* Remark: We may assume that A is symmetric. Why?

Observe that f(x) = txTAx + JxTATx = JxT(A + AT)x.

A + AT is symmetric!

Linear Dynamical System!

Xt11 =Xt —€Ax; = (I — €A)x;.
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Building intuition through Quadratic

Lemma (GD for Quadratic). Let A be a symmetric matrix of size n X n and L be
the maximum eigenvalue of A (in absolute value). Set € < % Suppose x = 0 is a
strict local minimum, then GD converges to it for all xg.
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Building intuition through Quadratic

Lemma (GD for Quadratic). Let A be a symmetric matrix of size n X n and L be
the maximum eigenvalue of A (in absolute value). Set € < % Suppose x = 0 is a
strict local minimum, then GD converges to it for all xg.

Proof. Since 0 is a strict local minimum, we have that A is positive definite.
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Building intuition through Quadratic

Lemma (GD for Quadratic). Let A be a symmetric matrix of size n X n and L be
the maximum eigenvalue of A (in absolute value). Set € < % Suppose x = 0 is a
strict local minimum, then GD converges to it for all x.

Proof. Since 0 is a strict local minimum, we have that A is positive definite.

e cA has eigenvalues in the interval (0, 1).

e = | — €A has eigenvalues in the interval (0,1).
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Building intuition through Quadratic

Lemma (GD for Quadratic). Let A be a symmetric matrix of size n X n and L be
the maximum eigenvalue of A (in absolute value). Set € < % Suppose x = 0 is a
strict local minimum, then GD converges to it for all xg.

Proof. Since 0 is a strict local minimum, we have that A is positive definite.

e cA has eigenvalues in the interval (0, 1).

e = | — €A has eigenvalues in the interval (0,1).

Therefore lim; z; = lim; (I — €A)*zo = 0.

 Remark: What if A has negative eigenvalues?
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Building intuition through Quadratic

Lemma (GD for Quadratic). Let A be a symmetric matrix of size n X n and L be
the maximum eigenvalue of A (in absolute value). Set € < % Suppose x = 0 is a
strict local minimum, then GD converges to it for all xg.

Proof. Since 0 is a strict local minimum, we have that A is positive definite.

e cA has eigenvalues in the interval (0, 1).

e = | — €A has eigenvalues in the interval (0, 1).

Therefore lim; z; = lim; (I — €A)*zo = 0.

Then x = 0 is not a local

* Remark: What if A has negative eigenvalues? minimum! It is a saddle point!
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Definitions

Definition (Critical and Saddle points). We provide the following definitions:
e A point x* is a critical or first-order stationary point of f if V f(x*) = 0.

o A critical point x* of f is a saddle point if for all neighborhoods U around x*
there are y,z € U such that f(z) < f(x*) < f(y).

A critical point x* of f is a strict saddle if Amin(V2f(x*)) < 0 (minimum
eigenvalue of Hessian is negative).
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Definitions

Definition (Critical and Saddle points). We provide the following definitions:
e A point x* is a critical or first-order stationary point of f if V f(x*) = 0.

o A critical point x* of f is a saddle point if for all neighborhoods U around x*
there are y,z € U such that f(z) < f(x*) < f(y).

A critical point x* of f is a strict saddle if Amin(V2f(x*)) < 0 (minimum
eigenvalue of Hessian is negative).

Therefore in the previous question, if A has negative eigenvalues,
then z = 0 is a strict saddle point.
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Building intuition through Quadratic (cont.)

e Question: But if it is a saddle point, when do we converge to it?
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Building intuition through Quadratic (cont.)

e Question: But if it is a saddle point, when do we converge to it?

* Answer: Only if xy belongs to the span of the eigenvalues that are less
than one of I — €A.

Claim (GD for Quadratic). Let A be an invertible symmetric matrix of size n X n
and L be the maximum eigenvalue of A (in absolute value). Set € < 1. Let vy, ..., U;
are eigenvectors that correspond to eigenvalues greater than zero and vy, 1, ..., vy be
the eigenvectors that correspond to eigenvalues smaller than zero. Then

li¥n xt = 0 iff xog € span(vq, ..., V).
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Building intuition through Quadratic (cont.)

e Question: But if it is a saddle point, when do we converge to it?

* Answer: Only if xy belongs to the span of the eigenvalues that are less
than one of I — €A.

Claim (GD for Quadratic). Let A be an invertible symmetric matrix of size n X n
and L be the maximum eigenvalue of A (in absolute value). Set € < 1. Let vy, ..., U;
are eigenvectors that correspond to eigenvalues greater than zero and vy, 1, ..., vy be
the eigenvectors that correspond to eigenvalues smaller than zero. Then

li¥n xt = 0 iff xog € span(vq, ..., V).

Proof. The eigenvectors that correspond to negative eigenvalues for A, are
eigenvectors with eigenvalues greater than one for I — €A...

e Denote F* = span(vq, ..., vg)

e Denote E* = span(vgy1, ..., Un).
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Building intuition through Quadratic (cont.)

* Conclusion: GD convergesto x = Q0 only if x, € E”.

* But how likely itis that x, € E° if k <n?
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Building intuition through Quadratic (cont.)

» Conclusion: GD convergesto x = 0 only if x, € E*.

* But how likely itis that x, € E° if k <n? Very unlikely!

Lemma (GD for Quadratic). Let A be a symmetric invertible matrix of maximum
eigenvalue in absolute value L such that E° has dimension k < n (i.e., x = 0isa
strict saddle for function f(x) = 3xT Ax). We set € < 1/L. For any continuous
distribution D, if we sample initialization xg from D, GD converges to x = 0 with
probability zero.
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall
1 1

flx = V() = f(x) < =57 IVF@)l3-
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall
1 1

flx = V() = f(x) < =57 IVF@)l3-

Assume that ||V f(x¢)||, > e fort =1, ..., T. We get that

flar) = f(er—1) + flar-1) — f(@r—2) + ... + f(21) — f(@0)< — %
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall

1 1

flx = V() = f(x) < =57 IVF@)l3-

2

Therefore f(z*) — f(zo) < f(zr) — flzo)< — ST = f(2*) — f(=0).
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Convergence to first order stationarity

Theorem (GD converges to first-order stationarity). For any € > 0, assume the
differentiable function is L-smooth and let « = L. Moreover, let f(x*) be the global
minimum of f. Then, the gradient descent algorithm in

Xt11 = Xt —aV f(x¢)

will visit an e-stationary point at least once in at most T := 2L/ (xogz— S terations.

Proof. Recall

1 1

flx = V() = f(x) < =57 IVF@)l3-

2

Therefore f(z*) — f(zo) < f(zr) — flzo)< — ST = f(2*) — f(=0).

Contradiction!
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Gradient Descent Avoids strict saddles

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and O be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xqo from D, GD converges to 0 with
probability zero.

Proof. GD is a dynamical system (but not linear).

Li41 — Ly — EVf(CBt)
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Gradient Descent Avoids strict saddles

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and O be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xqo from D, GD converges to 0 with
probability zero.

Proof. GD is a dynamical system (but not linear).

Li41 — Ly — EVf(CEt)

If you linearize it you get

Ti11 = (I —eV?f(0))x; + error(t).

with error(t) = O(||x; ||§) so if you start close to zero, it should be negligible...
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Gradient Descent Avoids strict saddles

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and 0 be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xqo from D, GD converges to 0 with
probability zero.

Proof. GD is a dynamical system (but not linear).

Li41 — Ly — EVf(.fL’t)

If you linearize it you get

Ti11 = (I —eV2f(0))x; + error(t).

with error(t) = O(||x¢||3) so if you start close to zero, it should be negligible...

Optimization for Machine Learning



Gradient Descent Avoids strict saddles

Assume you are given a dynamical system x;;1 = ¢(xy).

Theorem (Stable Manifold Theorem). Let O be a fixed point for the C” local dif-
feomorphism ¢ : U — E, where U is a neighborhood of 0 in the Banach space E.
Suppose that E = Es & E,;, where E; is the span of the eigenvectors corresponding to
eigenvalues less than or equal to 1 of D¢(0), and E,, is the span of the eigenvectors
corresponding to eigenvalues greater than 1 of D¢(0). Then there exists a C' em-
bedded disk W;> that is tangent to Es at O called the local stable center manifold.

loc
Moreover, there exists a neighborhood of 0, B, such that cp(Wf(fc) N B C W  and

. loc’
Ne ¢ “(B) C W3

loc*

Everybody please remain calm. The theorem above just says:

* Locally in the neighborhood of 0, it suffices to analyze the first derivative of ¢, D¢.
* All the trajectories that converge to O (reach a neighborhood of 0 and remain there
forever, must lie in some set Wy5.. of dimension as E°.
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Gradient Descent Avoids strict saddles

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and O be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xqo from D, GD converges to 0 with
probability zero.

Proof cont. A sufficient condition for diffeomorphism is when the Jacobian
derivative is invertible. Jacobian of GD is just

I — eV f(x)

the eigenvalues of which are greater than zero (L-smoothness and choice of ¢).
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Gradient Descent Avoids strict saddles

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and O be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xqo from D, GD converges to 0 with
probability zero.

Proof cont. A sufficient condition for diffeomorphism is when the Jacobian
derivative is invertible. Jacobian of GD is just

I —eV?f(x)
the eigenvalues of which are greater than zero (L-smoothness and choice of ¢).

Now since 0 is a strict saddle, V2 f(0) has a negative eigenvalue, hence E* has
dimension greater than one or equivalently ~° has dimension less than n.
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Gradient Descent Avoids strict saddles

Theorem (GD avoids strict saddles). Let f : R" — IR be a twice differentiable
function, L-smooth and O be a strict saddle point and € < 1/L. For any continu-
ous distribution D, if we sample initialization xqo from D, GD converges to 0 with
probability zero.

Proof cont. A sufficient condition for diffeomorphism is when the Jacobian
derivative is invertible. Jacobian of GD is just

I —eV?f(x)
the eigenvalues of which are greater than zero (L-smoothness and choice of ¢).

Now since 0 is a strict saddle, V2 f(0) has a negative eigenvalue, hence E* has
dimension greater than one or equivalently ~° has dimension less than n.

Hence W% has dimension less than n (measure zero set!).
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Gradient Descent Avoids strict saddles

Proof cont. So if x; converges to 0, there exists a time 7' such that zp € W,

which is a measure zero set.

The set of initial points zg so that GD converges to zero 0 is (assume ¢ is the

update rule of GD)
UiZod ™ (Wise)-

Optimization for Machine Learning



Gradient Descent Avoids strict saddles

Proof cont. So if x; converges to 0, there exists a time 7' such that zp € W,

which is a measure zero set.

The set of initial points zg so that GD converges to zero 0 is (assume ¢ is the

update rule of GD)
UiZod ™ (Wise)-

Claim (Measure zero to measure zero). Let g be a diffeomorphism and S is a
measure zero set. Then g(S) is also measure zero.
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Gradient Descent Avoids strict saddles

Proof cont. So if x; converges to 0, there exists a time 7' such that zp € W,

which is a measure zero set.

The set of initial points zg so that GD converges to zero 0 is (assume ¢ is the

update rule of GD)
UiZod ™ (Wise)-

Claim (Measure zero to measure zero). Let g be a diffeomorphism and S is a
measure zero set. Then g(S) is also measure zero.

Therefore each ¢~ (W[5 is measure zero and thus the union.
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Gradient Descent Avoids strict saddles

Proof cont. So if x; converges to 0, there exists a time 7' such that zp € W,

which is a measure zero set.

The set of initial points zg so that GD converges to zero 0 is (assume ¢ is the

update rule of GD)
UiZod ™ (Wise)-

Claim (Measure zero to measure zero). Let g be a diffeomorphism and S is a
measure zero set. Then g(S) is also measure zero.

Therefore each ¢~ (W[5 is measure zero and thus the union.

Since the set of initial conditions that converge
to 0 is of measure zero, any continous distribution
will not start from that set with probability one.
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Conclusion

* Introduction to Non-convex Optimization.

— Gradient Descent avoids strict saddles!

* Next lecture we will talk about more about
non-convex optimization.



